Vector Database Connectors
Vector Database Connectors enable seamless integration with various vector storage solutions, supporting efficient similarity search and vector operations for AI applications.
1.1 Milvus

1.1.1 Input Configuration
- Collection Name: Name of the vector collection
- Connection URI: Milvus server address
- Token: Authentication token
- Primary Field Name: Primary key field (e.g., "pk")
- Text Field Name: Field for text data
- Vector Field Name: Field for vector data
- Consistency Level: Session/Strong/Bounded
1.2 FAISS

1.2.1 Input Configuration
- Index Name: Name of the FAISS index
- Persist Directory: Storage location for index
- Allow Dangerous Deserialization: Safety flag
1.3 Astra DB

1.3.1 Input Configuration
- Application Token: Astra DB auth token
- API Endpoint: Astra DB API endpoint
- Collection: Vector collection name
- Keyspace: Database keyspace
- Embedding Model: Vector embedding model
1.4 Chroma DB

1.4.1 Input Configuration
- Collection Name: Name of collection
- Persist Directory: Storage location
- Server CORS Allow Origins: CORS settings
- Server Host: Host address
- Server HTTP Port: HTTP port number
- Server gRPC Port: gRPC port number
- Allow Duplicates: Duplicate handling flag
1.5 Weaviate

1.5.1 Input Configuration
- Weaviate URL: Server endpoint
- API Key: Authentication key
- Index Name: Name of the index
- Text Key: Text field identifier
Common Operations
- Search Query
- Ingest Data
- Embedding Generation
- Number of Results Configuration
- Search Results Retrieval
Note: Each vector database has specific optimization parameters and performance characteristics. Choose based on your scaling needs and use case requirements.