Hive SQL Agent
The Hive SQL Agent provides an intelligent interface for Apache Hive data warehouses. It translates natural language questions into optimized HiveQL queries, handles distributed query execution, and processes large-scale data analytics while maintaining Hive-specific optimizations.

Hive SQL Agent workflow and architecture
Configuration Parameters
Required Input Parameters
- jdbc_url: Hive JDBC connection URL
- http_path: HTTP path for Hive server
- username: Authentication username
- password: Authentication password
- jdbc_driver_path: Path to Hive JDBC driver
- database: Target Hive database
- question: Natural language query to be processed
Optional Configuration
- llm: Language model configuration
- model_name: Name of the language model
- temperature: Response creativity (0-1)
- max_tokens: Maximum response length
- connection_params: Additional connection parameters
- fetch_size: Number of rows to fetch per batch
- timeout: Query timeout in seconds
- ssl_enabled: Enable SSL connection
Output Format
{ "query_results": { "sql": string, "results": array, "columns": [ { "name": string, "type": string, "nullable": boolean } ], "metadata": { "row_count": number, "bytes_scanned": number, "execution_time": number } }, "performance_metrics": { "map_reduce_stats": { "map_tasks": number, "reduce_tasks": number, "bytes_read": number, "bytes_written": number }, "resource_usage": { "cpu_time": number, "memory_used": number, "hdfs_io": number }, "execution_stats": { "compile_time": number, "execution_time": number, "total_time": number } }, "optimization_info": { "partitions_scanned": number, "partition_pruning": boolean, "vectorization": boolean, "storage_format": string } }
Features
- Natural language to HiveQL translation
- Query optimization for Hive
- Partition pruning
- Vectorized query execution
- Performance monitoring
- Resource usage tracking
- Error handling and recovery
- Result set formatting
Note: Consider using ORC or Parquet file formats for better query performance. Enable partition pruning and vectorization when possible.
Tip: Use appropriate fetch sizes for large result sets. Monitor resource usage and adjust configurations based on workload patterns.
Example Usage
const hiveAgent = new HiveSQLAgent({ jdbc_url: "jdbc:hive2://hiveserver:10000", http_path: "cliservice", username: "hive_user", password: "****", jdbc_driver_path: "/path/to/hive-jdbc.jar", database: "sales_db", llm: { model_name: "gpt-4", temperature: 0.3 } }); const results = await hiveAgent.query({ question: "What were the total sales by region for last quarter?", connection_params: { fetch_size: 1000, timeout: 300, ssl_enabled: true } });