Databricks SQL Agent
The Databricks SQL Agent provides an intelligent interface for Databricks SQL warehouses. It translates natural language queries into optimized SQL, handles connection management, and processes analytics queries while maintaining Databricks-specific optimizations.

Databricks SQL Agent workflow and architecture
Configuration Parameters
Required Input Parameters
- databricks_hostname: Databricks workspace URL
- access_token: Databricks personal access token
- http_path: SQL warehouse HTTP path
- natural_language_query: User query in natural language
Optional Configuration
- llm: Language model configuration
- model_name: Name of the language model
- temperature: Response creativity (0-1)
- max_tokens: Maximum response length
- connection_params: Additional connection parameters
- catalog: Databricks catalog name
- schema: Database schema
- warehouse_id: SQL warehouse ID
- timeout: Query timeout in seconds
Output Format
{ "query_result": { "data": array, "schema": [ { "name": string, "type": string, "nullable": boolean } ], "metadata": { "row_count": number, "bytes_processed": number, "execution_time": number, "warehouse_size": string } }, "generated_query": { "sql": string, "analysis": { "tables_referenced": array, "columns_used": array, "filters_applied": array }, "performance_info": { "photon_enabled": boolean, "partition_pruning": boolean, "cache_hit": boolean }, "query_plan": { "plan_json": string, "estimated_cost": number, "optimization_applied": array } }, "execution_stats": { "compilation_time": number, "execution_time": number, "data_scanned": number, "peak_memory_usage": number } }
Features
- Natural language to SQL translation
- Photon query optimization
- Delta Lake integration
- Query performance monitoring
- Schema inference
- Resource usage tracking
- Error handling and recovery
- Query plan optimization
Note: Ensure proper warehouse sizing for your workload. Consider using Delta caching and Photon engine for better performance.
Tip: Use appropriate cluster sizing and auto-scaling settings. Monitor query performance and adjust configurations based on workload patterns.
Example Usage
const databricksAgent = new DatabricksSQLAgent({ databricks_hostname: "your-workspace.cloud.databricks.com", access_token: "dapi****", http_path: "/sql/1.0/warehouses/abc123", llm: { model_name: "gpt-4", temperature: 0.3 }, connection_params: { catalog: "main", schema: "default", warehouse_id: "abc123", timeout: 300 } }); const results = await databricksAgent.query({ natural_language_query: "What were the top 10 selling products last quarter?" });