Databricks SQL Agent
The Databricks SQL Agent is a specialized component that enables natural language interaction with Databricks SQL warehouses, providing intelligent query generation and data analysis capabilities.

Databricks SQL Agent interface and configuration options
Configuration Parameters
Required Parameters
- Language Model: The AI model for processing
- Warehouse ID: Databricks SQL warehouse identifier
- Host URL: Databricks workspace URL
- Access Token: Authentication token
- Schema: Database schema information
Optional Configuration
- Query Options: Query settings
- maxRows: Maximum rows to return
- timeout: Query timeout
- caching: Enable result caching
- Performance: Performance settings
- concurrency: Concurrent queries
- retryPolicy: Retry configuration
- pooling: Connection pooling
- Security: Security options
- encryption: Data encryption
- auditLogging: Query logging
Output Format
{ "result": { "query": { "sql": string, "parameters": object }, "data": { "columns": array, "rows": array, "rowCount": number }, "metadata": { "executionTime": string, "warehouseId": string, "queryId": string } } }
Example Usage
const databricksSQLAgent = new DatabricksSQLAgent({ languageModel: "gpt-4", warehouseId: "warehouse_id", hostUrl: "https://your-workspace.cloud.databricks.com", accessToken: process.env.DATABRICKS_TOKEN, schema: { database: "sales_db", tables: ["orders", "customers", "products"] }, queryOptions: { maxRows: 1000, timeout: 300, caching: true }, performance: { concurrency: 5, retryPolicy: { maxAttempts: 3, backoff: "exponential" }, pooling: { min: 1, max: 10 } }, security: { encryption: true, auditLogging: true } }); const result = await databricksSQLAgent.process({ input: "Show total sales by region for last quarter" });
Additional Resources
Best Practices
- Use appropriate warehouse sizing
- Implement query timeouts
- Enable result caching
- Monitor query performance
- Follow security guidelines