OpenAI Models
A drag-and-drop component for integrating OpenAI's language models. Configure model parameters and connect inputs/outputs to leverage OpenAI's powerful AI capabilities.

OpenAI component interface and configuration
API Key Notice: A valid OpenAI API key is required to use this component. Ensure your API key has sufficient quota and appropriate rate limits for your application needs.
Component Inputs
- Input: Text input for the model
Example: "Explain the concept of machine learning in simple terms."
- System Message: System prompt to guide model behavior
Example: "You are a helpful AI assistant that explains complex topics in simple language."
- Stream: Toggle for streaming responses
Example: true (for real-time token streaming) or false (for complete response)
- Model Name: The OpenAI model to use
Example: "gpt-4o-mini", "gpt-4o", "gpt-4-turbo"
- OpenAI API Key: Your API authentication key
Example: "sk-abcdefghijklmnopqrstuvwxyz123456789"
- OpenAI API Base: Custom API endpoint (optional)
Example: "https://custom-openai-endpoint.com/v1"
- JSON Mode: Toggle for JSON output format
Example: true (forces model to return valid JSON)
Component Outputs
- Text: Generated text output
Example: "Machine learning is a type of artificial intelligence that allows computers to learn from data without being explicitly programmed..."
- Language Model: Model information and metadata
Example: model: gpt-4o-mini, usage: {prompt_tokens: 42, completion_tokens: 128, total_tokens: 170}
Generation Parameters
Max Tokens
Maximum tokens to generate in the response
Default: Model-dependent (e.g., 4096 for most GPT-4 models)
Range: 1 to model maximum
Recommendation: Set based on expected response length
Temperature
Controls randomness in the output - higher values increase creativity
Default: 0.10
Range: 0.0 to 2.0
Recommendation: Lower (0.0-0.3) for factual/consistent responses, Higher (0.7-1.0) for creative tasks
Seed
Random seed for reproducible results
Default: 1
Range: Integer values
Recommendation: Use consistent seed values when reproducibility is important
Implementation Example
// Basic configuration
const openAI = {
modelName: "gpt-4o-mini",
openAIApiKey: process.env.OPENAI_API_KEY,
systemMessage: "You are a helpful assistant."
};
// Advanced configuration
const advancedOpenAI = {
modelName: "gpt-4o",
openAIApiKey: process.env.OPENAI_API_KEY,
openAIApiBase: "https://api.openai.com/v1",
temperature: 0.7,
maxTokens: 1000,
jsonMode: true,
stream: true,
seed: 12345,
modelKwargs: {
response_format: { type: "json_object" }
}
};
// Usage example
async function generateResponse(input) {
const response = await openaiComponent.generate({
input: input,
systemMessage: "You are an expert in climate science.",
temperature: 0.3
});
return response.text;
}
Use Cases
- Chatbots and Virtual Assistants: Create conversational agents using streaming responses
- Content Generation: Create articles, blog posts, and creative writing
- Data Extraction: Use JSON mode to extract structured information from unstructured text
- RAG Applications: Generate responses based on retrieved context
- Code Generation: Create code snippets and programming solutions
Useful Resources
Best Practices
- Use environment variables for API keys in production environments
- Monitor token usage to manage costs
- Implement proper error handling for API failures
- Use system messages effectively to guide model behavior
- Set appropriate temperature values based on your specific use case