HuggingFace Embeddor
Open Source Embeddings
Overview
Generate embeddings using HuggingFace's extensive collection of open-source models. Supports both hosted inference endpoints and local model deployment.
Popular Models
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-MiniLM-L6-v2
- BAAI/bge-large-en-v1.5
Key Features
- Hosted inference API
- Custom endpoints
- Model versioning
- Batch processing
Configuration
Required Parameters
apiKey
HuggingFace API tokenmodelName
Model identifier
Optional Parameters
inferenceEndpoint
Custom endpoint URL
Example Usage
// Using hosted inference API const embedder = new HuggingFaceEmbeddor({ apiKey: "your-api-key", modelName: "sentence-transformers/all-mpnet-base-v2" }); // Using custom inference endpoint const customEmbedder = new HuggingFaceEmbeddor({ apiKey: "your-api-key", modelName: "BAAI/bge-large-en-v1.5", inferenceEndpoint: "https://your-endpoint.huggingface.cloud" }); // Generate embeddings const result = await embedder.embed({ input: "Your text to embed" }); // Batch processing const batchResult = await embedder.embedBatch({ inputs: [ "First text to embed", "Second text to embed" ] });
Best Practices
- Choose appropriate model size
- Monitor API usage limits
- Implement error handling
- Cache common embeddings
Model Selection Tips
- Consider model size vs. performance
- Check language support
- Verify model updates
Response Format
{ "embeddings": { "vectors": number[][], "dimensions": number }, "model_info": { "name": string, "version": string, "type": "huggingface" }, "metadata": { "processing_time": number, "token_count": number }, "status": { "success": boolean, "error": string | null } }