CSV Agent

The CSV Agent specializes in processing, analyzing, and manipulating CSV data files. It provides intelligent parsing, data cleaning, analysis, and transformation capabilities while handling various CSV formats and error conditions.

CSV Agent Architecture

CSV Agent workflow and architecture

Configuration Parameters

Required Input Parameters

  • file_path: Path to the CSV file
  • text: Query or instruction for processing
  • agent_type: Type of analysis to perform

Optional Configuration

  • llm: Language model configuration
    • model_name: Name of the language model
    • temperature: Response creativity (0-1)
    • max_tokens: Maximum response length
  • handle_parse_errors: Error handling strategy
    • skip_bad_lines: Skip lines with parsing errors
    • error_handling: 'strict' | 'ignore' | 'coerce'
    • log_errors: Enable error logging
  • max_iterations: Maximum processing iterations
  • agent_description: Custom agent behavior instructions

Output Format

{
  "agent": {
    "type": string,
    "description": string,
    "iterations_used": number,
    "processing_stats": {
      "rows_processed": number,
      "errors_encountered": number,
      "processing_time": number
    }
  },
  "response": {
    "result": any,
    "analysis": {
      "summary": string,
      "insights": array,
      "visualizations": array
    },
    "data_quality": {
      "missing_values": object,
      "data_types": object,
      "anomalies": array
    },
    "transformations": [
      {
        "type": string,
        "description": string,
        "affected_columns": array
      }
    ]
  }
}

Features

  • Intelligent CSV parsing
  • Data cleaning and preprocessing
  • Statistical analysis
  • Pattern detection
  • Data validation
  • Format conversion
  • Missing value handling
  • Data visualization

Note: Large CSV files are processed in chunks to manage memory efficiently. Consider file size and available resources when setting max_iterations.

Tip: Use appropriate error handling strategies based on your data quality requirements. Enable logging for debugging and audit purposes.

Example Usage

const csvAgent = new CSVAgent({
  file_path: "./data/sales_data.csv",
  agent_type: "analysis",
  agent_description: "Analyze sales trends and patterns",
  llm: {
    model_name: "gpt-4",
    temperature: 0.3
  },
  handle_parse_errors: {
    skip_bad_lines: true,
    error_handling: "coerce",
    log_errors: true
  },
  max_iterations: 1000
});

const results = await csvAgent.process({
  text: "Analyze monthly sales trends and identify top performing products"
});