Structured Output Component
The Structured Output component transforms LLM responses into structured data formats based on predefined schemas. It ensures consistent output formatting, validates against schemas, and supports multiple output generation.

Structured Output workflow and architecture
Configuration Parameters
Required Parameters
- llm: LLM configuration
- model: LLM model name
- temperature: Generation temperature
- maxTokens: Token limit
- inputMessage: Input prompt or message
- schemaName: Name of output schema to use
- outputSchema: Schema definition
- fields: Field definitions
- types: Data types
- validations: Validation rules
Optional Parameters
- generateMultiple: Generate multiple outputs (default: false)
Output Format
{ "structured_output": { "data": Array<{ [key: string]: any // Matches schema definition }>, "schema_used": { "name": string, "version": string, "fields": Object } }, "metadata": { "generation_time": number, "model_used": string, "temperature": number, "tokens_used": number }, "validation": { "success": boolean, "errors": Array<{ "field": string, "error": string, "value": any }>, "warnings": Array<string> }, "statistics": { "outputs_generated": number, "fields_populated": number, "validation_pass_rate": number }, "processing": { "start_time": string, "end_time": string, "duration": number, "retries": number } }
Features
- Schema validation
- Multiple output support
- Type checking
- Field validation
- Error handling
- Performance metrics
- Retry logic
- Statistics tracking
Note: Define clear schemas with proper validation rules. Handle edge cases in field validations.
Tip: Use appropriate temperature settings for consistent output. Implement retry logic for failed generations.
Example Usage
const structuredOutput = new StructuredOutput(); // Single output generation const result1 = await structuredOutput.generate({ llm: { model: "gpt-4", temperature: 0.7, maxTokens: 1000 }, inputMessage: "Analyze the sentiment of this review", schemaName: "sentimentAnalysis", outputSchema: { fields: { sentiment: { type: "string", enum: ["positive", "negative", "neutral"] }, confidence: { type: "number", min: 0, max: 1 }, keywords: { type: "array", items: "string" }, summary: { type: "string", maxLength: 200 } } } }); // Multiple output generation const result2 = await structuredOutput.generate({ llm: { model: "gpt-4", temperature: 0.9, maxTokens: 2000 }, inputMessage: "Generate product names and descriptions", schemaName: "productIdeas", outputSchema: { fields: { name: { type: "string", maxLength: 50 }, description: { type: "string", maxLength: 200 }, targetMarket: { type: "string" }, priceRange: { type: "object", properties: { min: { type: "number" }, max: { type: "number" } } } } }, generateMultiple: true, count: 3 });
Common Schemas:
// Sentiment Analysis { "sentiment": "string", "confidence": "number", "keywords": "string[]" } // Product Information { "name": "string", "price": "number", "features": "string[]" } // Person Details { "name": "string", "age": "number", "contact": { "email": "string", "phone": "string" } }