Amazon Bedrock Embeddings
Generate embeddings using Amazon Bedrock's embedding models. Supports multiple model options and flexible AWS authentication methods for enterprise-grade vector representations.

Amazon Bedrock Embeddings component interface and configuration
AWS Authentication Notice: Ensure your AWS credentials have the appropriate permissions to access Amazon Bedrock services. Using IAM roles with least privilege is recommended for production deployments.
Component Inputs
- Model ID: The Bedrock model identifier for embeddings
Example: "amazon.titan-embed-text-v1", "cohere.embed-english-v3"
- AWS Access Key ID: Your AWS access key identifier
Example: "AKIAIOSFODNN7EXAMPLE"
- AWS Secret Access Key: Your AWS secret access key
Example: "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"
- Credentials Profile Name: Alternative to direct credentials, uses a named profile
Example: "bedrock-profile"
- Region Name: AWS region where Bedrock service is accessed
Example: "us-east-1", "us-west-2"
- Endpoint URL: Custom endpoint for AWS Bedrock
Example: "https://bedrock.us-west-2.amazonaws.com"
Component Outputs
- Embeddings: Vector representation of the input text
Example: [0.024, -0.032, 0.067, ...]
- Metadata: Additional information about the embedding generation
Example: model: amazon.titan-embed-text-v1, dimensions: 1536
Model Comparison
amazon.titan-embed-text-v1
Amazon's proprietary embedding model designed for general text embedding tasks
Dimensions: 1536
Language Support: Multilingual
Ideal for: General-purpose text embeddings and semantic search
cohere.embed-english-v3
Cohere's English-optimized embedding model available through Bedrock
Dimensions: 1024
Language Support: English-focused
Ideal for: English content retrieval and similarity matching
cohere.embed-multilingual-v3
Cohere's multilingual embedding model with support for 100+ languages
Dimensions: 1024
Language Support: 100+ languages
Ideal for: Multilingual applications and cross-lingual retrieval
Implementation Example
const embeddor = new AmazonBedrockEmbeddor({
modelId: "amazon.titan-embed-text-v1",
awsAccessKeyId: process.env.AWS_ACCESS_KEY_ID,
awsSecretAccessKey: process.env.AWS_SECRET_ACCESS_KEY,
regionName: "us-west-2"
});
// Generate embeddings
const result = await embeddor.embed({
input: "Your text to embed"
});
// Using profile-based auth
const profileEmbeddor = new AmazonBedrockEmbeddor({
modelId: "cohere.embed-english-v3",
credentialsProfileName: "my-aws-profile",
regionName: "us-east-1"
});
// Generate embeddings with the profile-based embedder
const profileResult = await profileEmbeddor.embed({
input: "Another text to embed"
});
console.log(result.embeddings);
Use Cases
- AWS-Native RAG Pipelines: Build retrieval systems within AWS ecosystem
- Semantic Search: Create vector databases for content retrieval
- Document Classification: Categorize documents based on semantic content
- Content Recommendation: Build recommendation systems for AWS-hosted content
- Multi-Modal Applications: Combine with other AWS services for comprehensive solutions
Best Practices
- Use environment variables for AWS credentials in production environments
- Implement AWS IAM roles with least privilege for production deployments
- Consider caching embeddings for frequently used content
- Choose the right model based on language requirements and use case
- Monitor usage costs and implement appropriate rate limiting