Documentation

Amazon Bedrock Embeddings

Generate embeddings using Amazon Bedrock's embedding models. Supports multiple model options and flexible AWS authentication methods for enterprise-grade vector representations.

Amazon Bedrock Embeddings Component

Amazon Bedrock Embeddings component interface and configuration

AWS Authentication Notice: Ensure your AWS credentials have the appropriate permissions to access Amazon Bedrock services. Using IAM roles with least privilege is recommended for production deployments.

Component Inputs

  • Model ID: The Bedrock model identifier for embeddings

    Example: "amazon.titan-embed-text-v1", "cohere.embed-english-v3"

  • AWS Access Key ID: Your AWS access key identifier

    Example: "AKIAIOSFODNN7EXAMPLE"

  • AWS Secret Access Key: Your AWS secret access key

    Example: "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

  • Credentials Profile Name: Alternative to direct credentials, uses a named profile

    Example: "bedrock-profile"

  • Region Name: AWS region where Bedrock service is accessed

    Example: "us-east-1", "us-west-2"

  • Endpoint URL: Custom endpoint for AWS Bedrock

    Example: "https://bedrock.us-west-2.amazonaws.com"

Component Outputs

  • Embeddings: Vector representation of the input text

    Example: [0.024, -0.032, 0.067, ...]

  • Metadata: Additional information about the embedding generation

    Example: model: amazon.titan-embed-text-v1, dimensions: 1536

Model Comparison

amazon.titan-embed-text-v1

Amazon's proprietary embedding model designed for general text embedding tasks

Dimensions: 1536 Language Support: Multilingual Ideal for: General-purpose text embeddings and semantic search

cohere.embed-english-v3

Cohere's English-optimized embedding model available through Bedrock

Dimensions: 1024 Language Support: English-focused Ideal for: English content retrieval and similarity matching

cohere.embed-multilingual-v3

Cohere's multilingual embedding model with support for 100+ languages

Dimensions: 1024 Language Support: 100+ languages Ideal for: Multilingual applications and cross-lingual retrieval

Implementation Example

const embeddor = new AmazonBedrockEmbeddor({ modelId: "amazon.titan-embed-text-v1", awsAccessKeyId: process.env.AWS_ACCESS_KEY_ID, awsSecretAccessKey: process.env.AWS_SECRET_ACCESS_KEY, regionName: "us-west-2" }); // Generate embeddings const result = await embeddor.embed({ input: "Your text to embed" }); // Using profile-based auth const profileEmbeddor = new AmazonBedrockEmbeddor({ modelId: "cohere.embed-english-v3", credentialsProfileName: "my-aws-profile", regionName: "us-east-1" }); // Generate embeddings with the profile-based embedder const profileResult = await profileEmbeddor.embed({ input: "Another text to embed" }); console.log(result.embeddings);

Use Cases

  • AWS-Native RAG Pipelines: Build retrieval systems within AWS ecosystem
  • Semantic Search: Create vector databases for content retrieval
  • Document Classification: Categorize documents based on semantic content
  • Content Recommendation: Build recommendation systems for AWS-hosted content
  • Multi-Modal Applications: Combine with other AWS services for comprehensive solutions

Best Practices

  • Use environment variables for AWS credentials in production environments
  • Implement AWS IAM roles with least privilege for production deployments
  • Consider caching embeddings for frequently used content
  • Choose the right model based on language requirements and use case
  • Monitor usage costs and implement appropriate rate limiting