OpenAI Tools Agent
The OpenAI Tools Agent provides a powerful interface for leveraging OpenAI's function calling capabilities with custom tools. It manages tool execution, conversation context, and provides intelligent responses while maintaining error handling and conversation history.

OpenAI Tools Agent workflow and architecture
Configuration Parameters
Required Input Parameters
- tools: Array of tool configurations
- input: User query or instruction
- system_prompt: Base system instructions
Optional Configuration
- llm: Language model configuration
- model_name: Name of the OpenAI model
- temperature: Response creativity (0-1)
- max_tokens: Maximum response length
- agent_config: Agent behavior settings
- agent_description: Role and capabilities
- handle_parse_errors: Error handling strategy
- verbose: Detailed logging
- max_iterations: Maximum tool call iterations
- chat_history: Previous conversation context
Output Format
{ "agent": { "status": "success" | "error", "tools_used": [ { "name": string, "calls": number, "success_rate": number } ], "iterations": number, "processing_time": number }, "response": { "message": string, "tool_outputs": [ { "tool": string, "input": object, "output": any, "timestamp": string } ], "reasoning": string, "next_steps": array }, "context": { "chat_history": array, "system_prompt": string, "current_state": object }, "metadata": { "model_info": { "name": string, "temperature": number }, "token_usage": { "prompt": number, "completion": number, "total": number } } }
Features
- Custom tool integration
- Conversation management
- Error handling and recovery
- Tool execution tracking
- Context preservation
- Performance monitoring
- Token usage optimization
- Detailed logging
Note: Tool definitions should be clear and specific. Consider token limits when designing tool inputs and outputs.
Tip: Enable verbose mode during development for better debugging. Use appropriate max_iterations to prevent infinite tool calling loops.
Example Usage
const toolsAgent = new OpenAIToolsAgent({ tools: [ { name: "calculator", description: "Perform mathematical calculations", parameters: { expression: "string" } }, { name: "weather", description: "Get weather information", parameters: { location: "string", unit: "celsius" | "fahrenheit" } } ], llm: { model_name: "gpt-4", temperature: 0.3 }, system_prompt: "You are a helpful assistant with access to various tools...", agent_config: { agent_description: "Multi-tool processing assistant", handle_parse_errors: true, verbose: true, max_iterations: 5 } }); const response = await toolsAgent.process({ input: "What's the temperature in London and convert it to Fahrenheit?", chat_history: previousMessages });