Impala SQL Agent

The Impala SQL Agent provides an intelligent interface for Apache Impala databases. It translates natural language questions into optimized Impala SQL queries, handles distributed query execution, and processes large-scale data analytics while maintaining Impala-specific optimizations.

Impala SQL Agent Architecture

Impala SQL Agent workflow and architecture

Configuration Parameters

Required Input Parameters

  • dsn: Data Source Name for Impala connection
  • username: Authentication username
  • password: Authentication password
  • question: Natural language query to be processed

Optional Configuration

  • llm: Language model configuration
    • model_name: Name of the language model
    • temperature: Response creativity (0-1)
    • max_tokens: Maximum response length
  • databases: List of accessible databases
  • connection_params: Additional connection parameters
    • auth_mechanism: Authentication type
    • use_ssl: Enable SSL connection
    • timeout: Query timeout in seconds

Output Format

{
  "query_results": {
    "sql": string,
    "results": array,
    "columns": [
      {
        "name": string,
        "type": string,
        "nullable": boolean
      }
    ],
    "metadata": {
      "row_count": number,
      "bytes_scanned": number,
      "execution_time": number
    }
  },
  "performance_metrics": {
    "cpu_time": number,
    "memory_usage": number,
    "io_stats": {
      "hdfs_bytes_read": number,
      "local_bytes_read": number,
      "cache_hit_ratio": number
    },
    "resource_pools": {
      "name": string,
      "memory_limit": number,
      "cpu_cores": number
    }
  },
  "execution_profile": {
    "query_plan": string,
    "bottlenecks": array,
    "optimization_suggestions": array
  }
}

Features

  • Natural language to Impala SQL translation
  • Distributed query optimization
  • HDFS integration
  • Resource pool management
  • Query performance monitoring
  • Schema inference
  • Error handling and recovery
  • Query plan optimization

Note: Ensure proper resource pool configuration for optimal query performance. Consider using partitioned tables and statistics for better query optimization.

Tip: Utilize Impala's caching mechanisms and metadata caching for frequently accessed tables. Monitor resource usage and adjust pool configurations accordingly.

Example Usage

const impalaAgent = new ImpalaSQLAgent({
  dsn: "impala://cluster.example.com:21050",
  username: "analyst",
  password: "****",
  llm: {
    model_name: "gpt-4",
    temperature: 0.3
  },
  databases: ["sales", "marketing", "operations"],
  connection_params: {
    auth_mechanism: "LDAP",
    use_ssl: true,
    timeout: 300
  }
});

const results = await impalaAgent.query({
  question: "What were the top 10 selling products last quarter by revenue?"
});