Documentation

DeepSeek Models

A drag-and-drop component for integrating DeepSeek's language models. Configure model parameters and connect inputs/outputs to leverage DeepSeek's advanced AI capabilities.

DeepSeek Component

DeepSeek component interface and configuration

API Key Required: A valid DeepSeek API key is required to use this component. You'll need to register for access to DeepSeek's API platform and generate an API key before using this component.

Component Inputs

  • Input: Text input for the model

    Example: "Write a function in Python to implement a binary search algorithm."

  • System Message: System prompt to guide model behavior

    Example: "You are an AI assistant specialized in writing efficient and well-documented code."

  • Stream: Toggle for streaming responses

    Example: true (for real-time token streaming) or false (for complete response)

  • Model Name: The DeepSeek model to use

    Example: "deepseek-chat", "deepseek-coder"

  • DeepSeek API Key: Your API authentication key

    Example: "sk-deepseek-xxxx..."

  • DeepSeek API Base: API endpoint URL

    Example: "https://api.deepseek.com" (Default)

  • JSON Mode: Toggle for JSON output format

    Example: true (for structured JSON responses) or false (for free-form text)

Component Outputs

  • Text: Generated text output

    Example: "```python\ndef binary_search(arr, target):\n left, right = 0, len(arr) - 1\n \n while left = right:\n mid = (left + right) // 2\n \n if arr[mid] == target:\n return mid\n elif arr[mid] target:\n left = mid + 1\n else:\n right = mid - 1\n \n return -1\n```"

  • Language Model: Model information and metadata

    Example: model: deepseek-coder, usage: {prompt_tokens: 45, completion_tokens: 120, total_tokens: 165}

Generation Parameters

Max Tokens

Maximum number of tokens to generate in the response

Default: 4096 Range: 1 to model maximum Recommendation: Set based on expected response length

Temperature

Controls randomness in the output - higher values increase creativity

Default: 1.0 Range: 0.0 to 2.0 Recommendation: Lower (0.1-0.3) for factual/code responses, Higher (0.7-1.0) for creative tasks

Seed

Random seed for reproducible outputs

Default: 1 Range: Any integer Recommendation: Set specific values for reproducible results

Model Kwargs

Additional model parameters passed as key-value pairs

Examples: - top_p: 0.9 (nucleus sampling parameter) - frequency_penalty: 0.5 (reduces repetition) - presence_penalty: 0.5 (encourages diversity) - stop: ["\n\n"] (tokens at which to stop generation)

Available Models

DeepSeek Chat

General-purpose language models for conversational tasks

Models: - deepseek-chat (7B parameters) - deepseek-chat-v2 (latest version)

DeepSeek Coder

Specialized language models for programming tasks

Models: - deepseek-coder (6.7B parameters) - deepseek-coder-instruct (instruction-tuned)

Implementation Example

// Basic configuration const deepSeekConfig = { modelName: "deepseek-chat", deepSeekApiKey: process.env.DEEPSEEK_API_KEY, systemMessage: "You are a helpful assistant." }; // Advanced configuration const advancedDeepSeekConfig = { modelName: "deepseek-coder", deepSeekApiKey: process.env.DEEPSEEK_API_KEY, deepSeekApiBase: "https://api.deepseek.com", maxTokens: 2000, temperature: 0.3, seed: 42, jsonMode: true, stream: true, modelKwargs: { top_p: 0.95, frequency_penalty: 0.2, presence_penalty: 0.2, stop: ["\n\n"] } }; // Usage example async function generateCode(input) { const response = await deepSeekComponent.generate({ input: input, systemMessage: "You are an expert programmer. Write clean, well-documented code.", modelName: "deepseek-coder", temperature: 0.2 }); return response.text; }

Use Cases

  • Code Generation: Create code snippets, functions, and algorithms across multiple programming languages
  • Technical Documentation: Generate clear explanations and documentation for technical concepts
  • Conversational AI: Build chat interfaces and virtual assistants
  • Data Transformation: Leverage JSON mode for structured data formatting
  • Content Creation: Generate articles, blogs, and other written content

Best Practices

  • Use JSON mode when you need structured, parseable outputs
  • Enable streaming for better user experience with real-time responses
  • Set a specific seed when you need reproducible results
  • Adjust temperature based on task type (lower for precision, higher for creativity)
  • Store API keys securely using environment variables
  • Monitor your token usage for cost management
  • Implement proper error handling for API failures
  • Choose DeepSeek Coder specifically for programming tasks