Documentation

Competitor LLM Function Call Evaluator

The Competitor LLM Function Call Evaluator is a specialized component that analyzes and compares function call implementations across different language models. It helps assess and benchmark function call capabilities, accuracy, and performance across various LLM providers.

Competitor LLM Function Call Evaluator Component

Competitor LLM Function Call Evaluator interface and configuration

Usage Note: Ensure that competitor models are properly configured and have equivalent function call capabilities. Results may vary based on model versions and capabilities.

Component Inputs

  • Input Text: The prompt or query text

    Example: "Generate a function to calculate area"

  • Output Text: The generated function call

    Example: Function call implementation

  • Competitor Name: Name of the competitor model

    Example: "GPT-4", "Claude", "PaLM"

  • Competitor Description: Details about the competitor

    Example: "Version info and capabilities"

  • Competitor List: List of competitors to evaluate

    Example: ["model1", "model2", "model3"]

Component Outputs

  • Comparison Results: Detailed comparison analysis

    Performance metrics and comparisons

  • Function Call Analysis: Analysis of function call quality

    Syntax, structure, and effectiveness evaluation

  • Recommendations: Improvement suggestions

    Optimization recommendations

How It Works

The evaluator performs comprehensive analysis of function call implementations across different LLMs, comparing their effectiveness, accuracy, and adherence to best practices.

Evaluation Process

  1. Competitor configuration
  2. Function call generation
  3. Implementation analysis
  4. Performance comparison
  5. Quality assessment
  6. Results compilation

Use Cases

  • Model Comparison: Compare function call capabilities
  • Performance Benchmarking: Evaluate implementation quality
  • Capability Assessment: Assess model capabilities
  • Quality Control: Ensure function call quality
  • Optimization: Identify areas for improvement

Implementation Example

const competitorEvaluator = new CompetitorLLMFunctionCallEvaluator({ inputText: "Generate a function to calculate circle area", outputText: "function calculateArea(radius) { return Math.PI * radius ** 2; }", competitorName: "GPT-4", competitorDescription: "Latest version with function calling capability", competitorList: ["GPT-4", "Claude-2", "PaLM-2"] }); const result = await competitorEvaluator.evaluate(); // Output: // { // comparisonResults: { // syntaxScore: 0.95, // functionalityScore: 0.98, // efficiencyScore: 0.92 // }, // analysis: { // strengths: ["Clean implementation", "Correct math"], // improvements: ["Add input validation"] // }, // recommendations: ["Consider adding parameter type checking"] // }

Best Practices

  • Use consistent evaluation criteria
  • Compare equivalent model versions
  • Consider model-specific features
  • Document comparison parameters
  • Regular benchmark updates