Competitor LLM Function Call Evaluator
The Competitor LLM Function Call Evaluator is a specialized component that analyzes and compares function call implementations across different language models. It helps assess and benchmark function call capabilities, accuracy, and performance across various LLM providers.

Competitor LLM Function Call Evaluator interface and configuration
Usage Note: Ensure that competitor models are properly configured and have equivalent function call capabilities. Results may vary based on model versions and capabilities.
Component Inputs
- Input Text: The prompt or query text
Example: "Generate a function to calculate area"
- Output Text: The generated function call
Example: Function call implementation
- Competitor Name: Name of the competitor model
Example: "GPT-4", "Claude", "PaLM"
- Competitor Description: Details about the competitor
Example: "Version info and capabilities"
- Competitor List: List of competitors to evaluate
Example: ["model1", "model2", "model3"]
Component Outputs
- Comparison Results: Detailed comparison analysis
Performance metrics and comparisons
- Function Call Analysis: Analysis of function call quality
Syntax, structure, and effectiveness evaluation
- Recommendations: Improvement suggestions
Optimization recommendations
How It Works
The evaluator performs comprehensive analysis of function call implementations across different LLMs, comparing their effectiveness, accuracy, and adherence to best practices.
Evaluation Process
- Competitor configuration
- Function call generation
- Implementation analysis
- Performance comparison
- Quality assessment
- Results compilation
Use Cases
- Model Comparison: Compare function call capabilities
- Performance Benchmarking: Evaluate implementation quality
- Capability Assessment: Assess model capabilities
- Quality Control: Ensure function call quality
- Optimization: Identify areas for improvement
Implementation Example
const competitorEvaluator = new CompetitorLLMFunctionCallEvaluator({
inputText: "Generate a function to calculate circle area",
outputText: "function calculateArea(radius) { return Math.PI * radius ** 2; }",
competitorName: "GPT-4",
competitorDescription: "Latest version with function calling capability",
competitorList: ["GPT-4", "Claude-2", "PaLM-2"]
});
const result = await competitorEvaluator.evaluate();
// Output:
// {
// comparisonResults: {
// syntaxScore: 0.95,
// functionalityScore: 0.98,
// efficiencyScore: 0.92
// },
// analysis: {
// strengths: ["Clean implementation", "Correct math"],
// improvements: ["Add input validation"]
// },
// recommendations: ["Consider adding parameter type checking"]
// }
Additional Resources
Best Practices
- Use consistent evaluation criteria
- Compare equivalent model versions
- Consider model-specific features
- Document comparison parameters
- Regular benchmark updates