Documentation

YouTube Transcripts

A component that extracts and processes transcripts from YouTube videos. Configure transcription parameters to convert video content into searchable, analyzable text data.

YouTube Transcripts Component

YouTube Transcripts component interface and configuration

Transcription Availability: This component can only extract transcripts from videos that have captions enabled. Some videos may have automatically generated captions, while others might have manually created or edited transcripts. Private or restricted videos may not be accessible.

Component Inputs

  • Video URL: URL or ID of the YouTube video

    Example: "https://www.youtube.com/watch?v=dQw4w9WgXcQ" or "dQw4w9WgXcQ"

  • Chunk Size (Seconds): Duration in seconds for each transcript segment

    Example: 60 (divides transcript into 60-second chunks)

  • Language: Preferred language for the transcript

    Example: "en" (English), "es" (Spanish), "fr" (French), "auto" (automatically detect)

  • Translation Language: Target language for translation

    Example: "en" (translate to English), "none" (no translation)

Component Outputs

  • Toolset: Extracted transcript text

    Example: The full transcript text divided into chunks according to the specified chunk size

Transcript Format Options

Raw Text

Plain text transcript without timestamps

Format: Continuous text Use Case: Content analysis, summarization, keyword extraction

Chunked Text

Transcript divided into segments of specified duration

Format: Array of text segments Use Case: Targeted analysis of specific video sections, embedding generation

Text with Timestamps

Transcript with time markers

Format: Array of objects with text and timestamp properties Use Case: Creating searchable video indexes, generating timestamped notes

Implementation Example

// Example: Processing a YouTube video transcript async function analyzeVideoContent(videoUrl) { // Extract transcript from the video const transcriptResult = await youtubeTranscriptsComponent.execute({ videoUrl: videoUrl, chunkSize: 60, language: "en", translationLanguage: "none" }); // Get video metadata (using a hypothetical component) const videoMetadata = await youtubeMetadataComponent.execute({ videoUrl: videoUrl }); // Analyze the transcript content const contentAnalysis = await textAnalysisComponent.execute({ text: transcriptResult.toolset, analysisType: "sentiment-and-topics" }); // Combine results return { videoTitle: videoMetadata.title, videoAuthor: videoMetadata.channelName, duration: videoMetadata.duration, transcript: transcriptResult.toolset, sentimentScore: contentAnalysis.sentiment, keyTopics: contentAnalysis.topics, analysisDate: new Date().toISOString() }; }

Use Cases

  • Content Summarization: Generate concise summaries of video content
  • Knowledge Extraction: Convert educational videos into searchable text resources
  • Research: Analyze interview or presentation content for insights
  • Language Learning: Provide text accompaniment to video content
  • SEO Enhancement: Extract keywords and topics from video content
  • Accessibility: Make video content accessible in text form

Best Practices

  • Verify that videos have available captions before processing
  • Use appropriate chunk sizes for your analysis needs (smaller for detailed processing, larger for overview)
  • Consider language settings carefully for multilingual content
  • Implement error handling for videos without available transcripts
  • Respect YouTube's terms of service regarding content usage
  • Process transcripts to remove filler words and correct automatic caption errors
  • Use transcript metadata like timestamps when relevant to your application