Text Embedder

Universal Embeddings
Text Embeddor Diagram

Overview

A versatile text embedding component that supports multiple embedding models and provides standardized output format. Ideal for converting text into vector representations for semantic search, clustering, and similarity analysis.

Key Features

  • Multi-model support
  • Batch processing
  • Dimension consistency
  • Error handling

Supported Models

  • OpenAI Embeddings
  • Hugging Face Models
  • Custom Embedding Models

Configuration

Required Parameters

  • embeddingModelModel configuration object
  • messageText to embed

Model Configuration Options

  • modelTypeType of embedding model
  • dimensionsOutput vector dimensions
  • optionsModel-specific options

Example Usage

const embedder = new TextEmbedder({
  embeddingModel: {
    modelType: "openai",
    dimensions: 1536,
    options: {
      model: "text-embedding-ada-002"
    }
  }
});

// Single text embedding
const result = await embedder.embed({
  message: "Your text to embed"
});

// Batch processing
const batchResult = await embedder.embedBatch({
  messages: [
    "First text to embed",
    "Second text to embed",
    "Third text to embed"
  ]
});

// Custom model configuration
const customEmbedder = new TextEmbedder({
  embeddingModel: {
    modelType: "custom",
    dimensions: 768,
    options: {
      modelPath: "path/to/model",
      normalize: true,
      batchSize: 32
    }
  }
});

Best Practices

  • Use appropriate model dimensions
  • Implement caching for repeated texts
  • Handle long texts appropriately

Tips

  • Normalize vectors when needed
  • Use batch processing for efficiency
  • Monitor embedding dimensions

Response Format

{
  "embedding_data": {
    "vector": number[],
    "dimensions": number,
    "model_info": {
      "type": string,
      "name": string,
      "version": string
    }
  },
  "metadata": {
    "input_length": number,
    "processing_time": number,
    "token_count": number
  },
  "status": {
    "success": boolean,
    "error": string | null
  }
}