Web Scraping Agent
The Web Scraping Agent is a sophisticated tool that extracts structured data from websites. It supports multiple scraping strategies, handles dynamic content, and processes data according to custom extraction schemas while respecting robots.txt and rate limits.

Web Scraping Agent workflow and architecture
Configuration Parameters
Required Input Parameters
- urls: Array of URLs to scrape
- scraper_type: Type of scraper to use (options: 'static', 'dynamic', 'api', 'headless')
- extraction_schema: JSON schema defining the data to extract
Optional Configuration
- language_model: LLM configuration for content processing (default: GPT-4)
- output_format: Desired format of extracted data (options: 'json', 'csv', 'xml')
- chunk_size: Size of text chunks for processing (default: 1000)
- chunk_overlap: Overlap between consecutive chunks (default: 200)
Output Format
{ "scraped_data": { "raw_content": { "html": string, "text": string, "metadata": object }, "chunks": [ { "content": string, "start_index": number, "end_index": number } ] }, "extracted_data": { "structured_data": object, "entities": array, "relationships": array }, "metadata": { "url": string, "timestamp": string, "scraping_stats": { "duration": number, "success": boolean, "errors": array } } }
Features
- Multiple scraping strategies (Static, Dynamic, API-based)
- Custom extraction schema support
- Intelligent content chunking
- Rate limiting and retry mechanisms
- Proxy support and IP rotation
- Cookie and session handling
- JavaScript rendering support
- Error handling and recovery
Note: Always check and respect the target website's robots.txt file and terms of service before scraping. Implement appropriate delays between requests to avoid overwhelming the target servers.
Tip: Use the dynamic scraper type for JavaScript-heavy websites and the static scraper for simple HTML pages. Adjust chunk sizes based on the content structure of your target websites.
Example Usage
const webScrapingAgent = new WebScrapingAgent({ scraper_type: "dynamic", output_format: "json", chunk_size: 1000, chunk_overlap: 200, extraction_schema: { title: "h1", content: "article", author: ".author-name", date: ".publish-date" } }); const results = await webScrapingAgent.scrape({ urls: ["https://example.com/article1", "https://example.com/article2"], language_model: "gpt-4" });