Solr Agent

The Solr Agent provides an intelligent interface to Apache Solr search platform. It enables natural language queries to be translated into Solr query syntax, handles authentication, and processes search results with advanced filtering and ranking capabilities.

Solr Agent Architecture

Solr Agent workflow and architecture

Configuration Parameters

Required Input Parameters

  • solr_url: Base URL of the Solr instance
  • collection_name: Name of the Solr collection to query
  • query: Search query (natural language or Solr syntax)

Optional Configuration

  • username: Solr authentication username
  • password: Solr authentication password
  • llm: Language model configuration
    • model_name: Name of the language model
    • temperature: Response creativity (0-1)
    • max_tokens: Maximum response length
  • query_params: Additional Solr query parameters
    • rows: Number of results to return
    • start: Starting offset
    • sort: Sort order
    • fq: Filter queries

Output Format

{
  "query_results": {
    "numFound": number,
    "start": number,
    "maxScore": number,
    "docs": [
      {
        "id": string,
        "score": number,
        "fields": object,
        "_version_": number
      }
    ]
  },
  "facets": {
    // Optional faceted results
  },
  "highlighting": {
    // Optional highlighting results
  },
  "metadata": {
    "query_time": number,
    "status": number,
    "QTime": number,
    "params": object
  }
}

Features

  • Natural language to Solr query translation
  • Secure authentication handling
  • Faceted search support
  • Result highlighting
  • Query optimization
  • Error handling and retries
  • Response formatting
  • Query parameter validation

Note: Ensure your Solr instance is properly secured and that the agent has appropriate access permissions. Consider using API keys or token-based authentication in production environments.

Tip: Use faceting and field collapsing for better organization of search results. Enable result highlighting to help users identify relevant content quickly.

Example Usage

const solrAgent = new SolrAgent({
  solr_url: "http://localhost:8983/solr",
  collection_name: "my_collection",
  username: "admin",
  password: "****",
  llm: {
    model_name: "gpt-4",
    temperature: 0.3
  }
});

const results = await solrAgent.search({
  query: "Find documents about machine learning published last year",
  query_params: {
    rows: 10,
    sort: "score desc",
    fq: ["publication_date:[NOW-1YEAR TO NOW]"]
  }
});